8.0 Exponential Function

A Exponents Laws	B Definition
The following relations are called <i>exponent laws</i> : $(ab)^{n} = a^{n}b^{n} \qquad \left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$ $a^{m}a^{n} = a^{m+n} \qquad \frac{a^{m}}{a^{n}} = a^{m-n}$ $(a^{m})^{n} = a^{mn} \qquad a^{-n} = \frac{1}{a^{n}}$ Note. If the exponent is a <i>rational number</i> then: $a^{\frac{p}{q}} = \sqrt[q]{a^{p}}, q \text{ is a positive integer}$	Exponential function $y = f(x)$ is defined by: $y = f(x) = b^x$ where: • <i>b</i> is the base • <i>x</i> is the argument • <i>y</i> is the value of the exponential function Note. For each value of the base <i>b</i> a different exponential function is defined.
Ex 1. Find the <i>base</i> of the following exponential functions. a) $y = 2^{3x}$ b) $y = \frac{1}{10^x}$	c) $y = 3^{\frac{x}{2}}$ d) $y = 2^{-3x}$ e) $y = \sqrt{3^{x}}$
C Restrictions To avoid complex number values, the base <i>b</i> is positive: $b > 0$. Indeed, if the base is negative, then the value of the exponential function is a complex number. For example: $(-4)^{\frac{1}{2}} = \sqrt{-4} = \pm 2i$. In order the exponential function to be a one-to-one function, the base must not be one: $b \neq 1$. Indeed, if the base is one, then $1^x = 1$, which is not a one-to-one function and does not have an inverse function. So, in conclusion the restrictions are: $b > 0, b \neq 1$ or $b \in (0,1) \cup (1,\infty)$	Ex 2. Determine if the exponential function is well defined (satisfies the restrictions). a) $y = (-2)^{x}$ b) $y = -2^{x}$ c) $y = -1^{x}$ d) $y = \frac{1}{(-2)^{x}}$
D The Graph of the Exponential Function Ex 3. Graph on the same grid. a) $y = 2^{x}$ b) $y = \left(\frac{1}{2}\right)^{x}$ Note. $y = \left(\frac{1}{2}\right)^{x} = 2^{-x}$, so the graphs are symmetric with respect to the y-axis.	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

8.0 Exponential Function © 2018 Iulia & Teodoru Gugoiu - Page 1 of 2

