8.0 Exponential Function

A Exponents Laws

The following relations are called exponent laws:

$$
\begin{array}{ll}
(a b)^{n}=a^{n} b^{n} & \left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \\
a^{m} a^{n}=a^{m+n} & \frac{a^{m}}{a^{n}}=a^{m-n} \\
\left(a^{m}\right)^{n}=a^{m n} & a^{-n}=\frac{1}{a^{n}}
\end{array}
$$

Note. If the exponent is a rational number then:
$a^{\frac{p}{q}}=\sqrt[q]{a^{p}}, q$ is a positive integer

Ex 1. Find the base of the following exponential functions.
a) $y=2^{3 x}$
b) $y=\frac{1}{10^{x}}$

C Restrictions

To avoid complex number values, the base b is positive: $b>0$.
Indeed, if the base is negative, then the value of the exponential function is a complex number.
For example: $(-4)^{\frac{1}{2}}=\sqrt{-4}= \pm 2 i$.
In order the exponential function to be a one-to-one function, the base must not be one: $b \neq 1$.
Indeed, if the base is one, then $1^{x}=1$, which is not a one-to-one function and does not have an inverse function.

So, in conclusion the restrictions are:
$b>0, b \neq 1$ or $b \in(0,1) \cup(1, \infty)$

D The Graph of the Exponential Function

Ex 3. Graph on the same grid.
a) $y=2^{x}$
b) $y=\left(\frac{1}{2}\right)^{x}$

Note. $y=\left(\frac{1}{2}\right)^{x}=2^{-x}$, so the graphs are symmetric with respect to the y-axis.

B Definition

Exponential function $y=f(x)$ is defined by:

$$
y=f(x)=b^{x}
$$

where:

- b is the base
- x is the argument
- y is the value of the exponential function

Note. For each value of the base b a different exponential function is defined.
c) $y=3^{\frac{x}{2}}$
d) $y=2^{-3 x}$
e) $y=\sqrt{3^{x}}$

Ex 2. Determine if the exponential function is well defined (satisfies the restrictions).
a) $y=(-2)^{x}$
b) $y=-2^{x}$
c) $y=-1^{x}$
d) $y=\frac{1}{(-2)^{x}}$

E Characteristics of the Exponential Function

Ex 4. Use the graphs obtained at Ex 3 to find the following characteristics of the exponential function.

- Domain:
- Range:
- x-intercepts
- y-intercepts:
- Increasing/Decreasing:
- Horizontal Asymptotes:
- Vertical Asymptotes:
- Continuity:
- One-to-one:
- Key Points:

F Transformations

$$
g(x)=A b^{B(x-C)}+D
$$

Note. The equation of the horizontal asymptote is: $y=D$

Ex 5. Use transformations to graph the following exponential functions.

a) $y=-3^{-x+1}+9$

b) $y=-4+2 \cdot 0.5^{x+2}$

G One-to-one property

The exponential function is a one-to-one function. Therefore:

$$
b^{x}=b^{y} \Leftrightarrow x=y
$$

